Connections between the Bézout’s identity and auto-differentiation

Daniel Coble
September 3, 2023

1 Abstract

I draw a connection between the Euclidean Algorithm and Bézout’s identity and backpropagation, specifically
stating that Bézout’s method for calculating integers z, y such that az + by = ged(a,b), is equivalent to
reverse-mode differentiation applied to the Euclidean algorithm. This connection inspires the development of
a feed-forward algorithm implementation. Three Python implementations of the Euclidean Algorithm/Bézout’s
identity are given: a standard one, one using the auto-differentiation engine TensorFlow which I claim is
equivalent, and a feedforward algorithm.

2 Introduction

According to Wikipedia [1], the emergence of the backpropagation algorithm for efficient calculation of
gradients occurred between the 1960’s and 70’s and was due to people such as Seppo Linnainmaa, Frank
Rosenblatt and Henry J. Kelley. The idea to use the chain rule to calculate derivatives is not hard, and
in fact the delay in developing machine learning approaches using backpropagation, which came around in
1986, had more to do with constructing neural networks which could efficiently use backpropagation, than
the complexity of the backpropagation approach.

Published in 300 B.C., the Euclidean algorithm has been cited as the oldest nontrivial algorithm which is
still in use [2], and in the recent decades has grown in importance because of its use in cryptography. Given
two positive integers a and b (It can be generalized to other types of numbers.), the Euclidean algorithm
calculates the greatest common divisor, ged(a,b). The algorithm works due to the lemma below

Lemma 2.1 (Integer division). For positive integers a and b, a > b there is a unique integer division solution
to

a=qb+r 0<r<b
Furthermore,
ged(a, b) = ged(b,7)

Since b < a and r < b, the lemma reduces the size of the two numbers within the gcd. The Euclidean
algorithm is nothing more than repeated division to calculate smaller and smaller numbers, terminating
when ged(d, 0) is reached, and returning d. Bézout’s identity (which was discovered for the case of integers
by Méziriac [3]). States the following:

Proposition 1 (Bézout’s identity). For all integers a and b, there exists some integers x and y such that
az + by = ged(a, b).

The proof of this applies back-substitution of the intermediate equations from the Euclidean algorithm.
Below I illustrate by an example, calculating ged(314,159) then finding = and y with 314z + 159y =
ged(314, 159).

Euclidean algorithm:

314 =1 x 159 + 155 gcd(314,159) =gcd(159,155) (Step 1)

159 =1 x 155 4 4 =ged(155,4) (Step 2)

155 =38 x 4+ 3 =ged(4,3) (Step 3)

4=1x3+1 =ged(3,1) (Step 4)

3=3x1+40 =ged(1,00=1] (Step 5)

Bézout reverse step:

1=4-1x3 (Step 1)
=4—1x (155 —38x4) =39 x4—1x155 (Step 2)
=39 x (159 — 1 x 155) — 1 x 155 = 39 x 159 — 40 x 155 (Step 3)
=39 x 159 — 40(314 — 1 x 159)| = —40 x 314+ 79 x 159] (Step 4)

The starting point of the Bézout reverse step is a rearrangement of (Step 4) of the Euclidean algorithm,
representing 1 as a linear combination of 4 and 3. Then a rearrangement of (Step 3) of the Euclidean
algorithm is to represent 1 as a sum of 4s and 155. This continues up the steps of the Euclidean algorithm
until 1 is solved in terms of 159 and 314. A Python implementation of the forward and backwards steps of
the Bézout algorithm is given below.

EEEIS]

A standard implementation of the Euclidean/Bezout algorithm, showing forward-mode and
reverse -mode steps.
Returns a tuple (d, x, y) with d = gcd(a, b), and ax + by = d.

EEEIS]

5 def euclid_bezout(a, b):

Euclidean algorithm/forward-mode step

Cc = [a, Dbl
Q =[]
while(C[-1] !'= 0):

q = C[-21//C[-1]
r = C[-2] - gqxC[-1]
Q.append(q)
C.append (r)
d = c[-2]
Bezout/revese-mode step
x =1
y =
fo

(o8]

-Q[-2]

i in range(len(Q)-3, -1, -1):
X_new y

_ x - y*Q[i]

~<
B
o
=
nwon

5 euclid_bezout (314, 159)

>>>(1, -40, 79)

3 Reverse mode auto-differentiation

The Euclidean algorithm itself is not differentiable since it isn’t defined for non-integer numbers. However,
the graph, or computation sequence, of the Euclidean algorithm evaluated at (a,b) is continuous and
differentiable. The data from an application of the Euclidean algorithm can be encoded into two sets
{¢;} and {q;} with ¢; = a and ¢y = b, satisfying

Ci = qiCi+1 + Cit2

1
2
3

The algorithm then terminates at step step N when cyy2 = 0 and returns cy4+;. Now consider step j,
obviously we have

Cj+2 = Ci — qiCit+1

Which is the substitution rule for accumulating higher-order elements in terms of lower-order elements. So
if at one level d is written as

d = weci1 + 2¢i42,
substitution yields
d=wciy1 + 2z (c; — qiciv1) = z¢; + (W — 2¢;) Ciy1 (3.1)

Now we can view this process through backpropagation. Imagine a Euclidean algorithm step with transforms
tuples (¢;, ¢i41) = (Cit1, Cit2). The need to use ~ to differentiate the input and output will be shown after
the calculation. The rules for iteration are

Ci+1 = Cit1

~ (3.2)
Cit+2 = € — ¢iCi+1
Now examining the product rule,
dd __ _9d_ 0OCit1 + dd_ 9Cit2
aci - agi+1 BCL BEHz acL
od_ _ _9dd 9cin dd_ OCiy2
Ocit1 9¢it1 Ocit OCit2 Ocit1
Starting with the initial data as
od __
3a+1‘71u
od
OCiy2 &
We get
od _ o041 | OCita
801 =w OCL + GCL
ad _wac,;+1 +Z8Ci+2
Ociy1 ~ Ocit1 Ocit1
Then taking partial derivatives from the iteration rule (3.2),
ad
od _
a(gd o (3.3)
Jei: WA

And these are the same rules as was shown in (3.1). Notice that afd # #7 showing the need to
i+1 Cit+1
differentiate the input and output spaces.

An implementation of the Euclidean algorithm using the automatic differentiation engine TensorFlow is
given below. As with a neural network, only the forward pass needs to be explicitly constructed and the
reverse section is calculated automatically by the engine.
import tensorflow as tf
import numpy as np

EEEIS]

A TensorFlow implementation of the Euclidean algorithm. Backpropagation produces the Bezout
values x and y.

; Returns a tuple (d, x, y) with d = gcd(a, b) and ax + by = d

33
def tensorflow_bezout(a, b):

a = tf.Variable(a, dtype=tf.float32)
b = tf.Variable(b, dtype=tf.float32)

1
>
3
4

with tf.GradientTape() as tape:
tape.watch([a, b])
cl = a
c2 =b
while(c2 > 0):
q = cl // c2
cl_new = c2
c2_new = cl - g*c2

cl = cl_new
c2 = c2_new
d = ci1
[x, y] = tape.gradient(d, [a, bl])
return (int(d.numpy ()), int(x.numpy()), int(y.numpy()))

tensorflow_bezout (314, 159)
>>>((1, -40, 79)

4 Forward mode auto-differentiation

Having shown that the values z and y are equal to % and %, respectively, we know any method which

calculates those values will produce solutions to Bézout’s identity. Forward mode auto-differentiation works
on a completely different principle than reverse-mode autodifferentation. For the case of tracking two
variables, numbers are represented as tuples of the form

dc Oc
c=|c,—, =
"0a’ O
Tuples obey the rules of a field, with addition and multiplication defined using the respective rules for
combining derivatives.

ety (e 40, 200 Oca D Ocy
PR AT 090 T 9a o ob
(dcy dey Dy 8c1>
Ci1*Cg = |cCy*C2,C1 % — +Co*x —,C1 *

9a 90 oy T

Since it only contains the Euclidean algorithm, this code looks superficially like the code shown in section 3.
However the code in that section does execute the reverse procedure in the back-end of the auto-differentiation
engine, while this code carries all calculations in the forward direction. That also means that while the
standard reverse-mode algorithm has memory requirements bounded by the size of the inputs, the forward
mode algorithm has constant memory requirements. An implementation of forward-mode calculation is given
below.

A class which represents tuple numbers (c, dc/da, dc/db)

EEEIS]

class TupleNum():

def init__(self, num):

self .num = num
def __mul__(self, other):
c = self.num[0]*other.num[0]
dcda = self.num[1]*other.num[0] + self.num[0O]*other.num[1]
dcdb = self.num[2]*other.num[0] + self.num[O]*other.num[2]
return TupleNum((c, dcda, dcdb))

def __add__(self, other):
c = self.num[0] + other.num[0]
dcda = self.num[1] + other.num[1]
dcdb = self.num[2] + other.num[2]

return TupleNum((c, dcda, dcdb))

1 def sub__(self, other):

2 c = self.num[0] - other.num[0]
23 dcda = self.num[1] - other.num[1]
24 dcdb = self.num[2] - other.num[2]

25 return TupleNum((c, dcda, dcdb))
>

27 def __floordiv__(self, other):
28 c = self.num[0]//other.num[0]
29 return TupleNum((c, 0, 0))

EIEIS]

32 This forward implementation of Euclidean algorithm doesn’t contain a reverse Bezout step,
but produces the values via forward mode autodifferentation.

33 Returns a tuple (d, x, y) with d = gcd(a, b) and ax + by = d

PR]

35 def forward_bezout(a, Db):

36 cl = TupleNum((a, 1, 0))

37 c2 = TupleNum((b, 0, 1))

38 while (c2.num[0] > 0):

39 q =cl // c2

10 cl_new = c2

41 c2_new cl - g*c2

cl_new
c2_new

43 cl
44 c2
15 d = c1
46 return d.num

15 forward_bezout (314, 159)
9 >>>(1, -40, 79)

Careful examination of this method could produce another proof of Bézout’s identity, but I don’t do that
here.

5 Notebook

See working examples of the three implementations at https://github.com/dncoble/Notebooks/blob/main/
Euclidean%20Algorithm%20and %20 A uto-differentation /Euclidean%20Algorithm %20and %20 A uto-differentiation.
ipynb.

References
[1] https://en.wikipedia.org/wiki/Backpropagation.

[2] Knuth, D. E., “The art of computer programming, volume 2 seminumerical algorithms,” (1997).

[3] https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity.

https://github.com/dncoble/Notebooks/blob/main/Euclidean%20Algorithm%20and%20Auto-differentation/Euclidean%20Algorithm%20and%20Auto-differentiation.ipynb
https://github.com/dncoble/Notebooks/blob/main/Euclidean%20Algorithm%20and%20Auto-differentation/Euclidean%20Algorithm%20and%20Auto-differentiation.ipynb
https://github.com/dncoble/Notebooks/blob/main/Euclidean%20Algorithm%20and%20Auto-differentation/Euclidean%20Algorithm%20and%20Auto-differentiation.ipynb

	Abstract
	Introduction
	Reverse mode auto-differentiation
	Forward mode auto-differentiation
	Notebook

